• TAO Nairong
    Title:Professor Email: nrtao@imr.ac.cn
    Tel. : +86 24 23971891 FAX: +86 24 23998660
    Division: Non-equilibrium Metallic Materials Division, Shenyang National Laboratory for Materials Science
    Address: Non-equilibrium Metallic Materials Division, Institute of Metal Research Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, China, 110016


Sep. 2009 - present     Professor (IMR)

Jan. 2008 - Dec. 2008   Visiting Scientist, Massachusetts Institute of Technology, USA

Apr. 2005 - Aug. 2009,  Associate professor, Institute of Metal Research, Chinese Academy of Sciences.

Sept. 2003 - Dec. 2004  Visiting Scientist,Max-Planck-Institute for Metal Research, Germany

May 2003,  PH.D (Materials Science) Institute of Metal Research (IMR), Graduate University of Chinese Academy of Sciences, Shenyang, China

Research Interest:

Synthesis and microstructure of metallic materials via plastic deformation

Mechanical properties of metallic materials

Research Achievement:

1. Developing dynamic plastic deformation (DPD) technique to prepare the mixed nanostructured materials consisting of nanotwins and nanograins

Dynamic plastic deformation technique was developed to prepare bulk nanostructured materials. The mixed nanostructures consisting of nanotwins and nanograins have been achieved in pure copper, Cu-based alloy and stainless steels by using dynamic plastic deformation. The subsequent annealing of as-DPD materials resulted in a new mixed structure consisting of micro-sized recrystallized grains and nanotwins, in which nanotwins strengthen materials and the recrystallized grains impart the ductility.    

2. Developing surface mechanical attrition treatment (SMGT) technique to prepare gradient nano-grained structure

Surface mechanical attrition treatment technique was developed to prepare gradient nano-grained (GNG) materials. Gradient nanograins with a surface layer of several decades of micrometers thick have been obtained in pure copper and stainless steel. Mechanical properties of GNG materials were much enhanced in comparison with their overall coarse-grained counterparts.  

3. Proposing the formation mechanism of nanograins via nanotwins

Induction of high-density nanotwins divides the initial coarse grains into 1-dimension nanostructure with a special crystallographic orientation. With increasing strain, these special oriented nanostructures were subdivided into equal axis nanograins due to the formation of dislocation walls or secondary twins inside these 1-dimension nanostructures. When high-density nanotwins were sheared, nanograins were formed inside shear bands.

Service to the International Professional Societies:



1.  K. Lu, F.K. Yan, H.T. Wang, N.R. Tao, Strengthening austenitic steels by using nanotwinned austenitic grains, Scripta Materialia, 2012, Vol. 66, 878-883.

2.  Singh, N.R. Tao, M. Dao, S. Suresh, Repeated frictional sliding properties of copper containing nanoscale twins, Scripta Materialia, 2012, Vol. 66, 849-853.

3.  H.T. Wang, N.R. Tao, K. Lu, Strengthening an austenitic Fe-Mn steel by using nano-twinned austenitic grains, Acta Materialia, 2012, Vol. 60, 4027-4040.

4.  F.K. Yan, G.Z. Liu, N.R. Tao, K. Lu, Strength and ductility of 316L austenitic stainless steel strengthened by nano-scale twin bundles,  Acta Materialia, 2012, Vol. 60, 1059-1071.

5.  W.L. Li, N.R. Tao, Z. Han and K. Lu,  Comparisons of dry sliding tribological behaviors between coarse-grained and nanocrystalline copper, Wear, 2012, Vol. 274-275, 306-312.

6.  F. Yan, H.W. Zhang, N.R. Tao, K. Lu,  Quantifying the microstructures of pure Cu subjected to dynamic plastic deformation at cryogenic temperature,  Journal of Materials Science and Technology, 2011, Vol. 27, No.8, 673-679.

7.  B. Yao, Z. Han, Y.S. Li, N.R. Tao, K. Lu,  Dry sliding tribological properties of nanostructured copper subjected to dynamic plastic deformation, Wear, 2011, Vol. 271, 1609-1616.

8.  F. Huang, N.R. Tao, K. Lu,  Effects of impurity on microstructure and hardness in pure Al subjected to dynamic plastic deformation at cryogenic temperature,  Journal of Materials Science and Technology, 2011, Vol. 27, No.7, 628-632.

9.  G.H. Xiao, N.R. Tao, K. Lu,  Strength-ductility combination of nanostructured Cu-Zn alloy with nanotwin bundles,  Scripta Materialia, 2011, Vol. 65, 119-122.

10.  Y. Zhang, N.R. Tao, K. Lu,  Effects of stacking fault energy, strain rate and temperature on microstructures and properties of Cu-Al subject to plastic deformation,  Acta Materialia, 2011, Vol. 58, 6048-6058.

11.  T.H. Fang, W.L. Li, N.R. Tao, K. Lu,  Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper,  Science, 2011, Vol. 331, 1587-1590.

12.  F. Huang, N.R. Tao, K. Lu,  Effects of Strain Rate and Deformation Temperature on Microstructures and Hardness in Plastically Deformed Pure Aluminum Journal of Materials Science and Technology, 2011, Vol. 27, No.1, 1-7.

13.  G. Z. Liu, N. R. Tao, K. Lu,  316L austenite stainless steels strengthened by means of nano-scale twins, Journal of Materials Science and Technology, 2010, Vol. 26, No.4, 289-292.

14.  C.S. Hong, N.R. Tao, X. Huang, K. Lu,  Nucleation and thickening of shear bands in nano-scale twin/matrix lamellae of a Cu-Al alloy processed by dynamic plastic deformation,  Acta Materialia, 2010, Vol. 58, 3103-3116.

15.  E. Qin, L. Lu, N.R. Tao, J. Tan, K. Lu,  Enhanced fracture toughness and strength in bulk nanocrystalline Cu with nanoscale twin bundles,  Acta Materialia, 2009, Vol. 57, 6215-6225.

16.  Y. Zhang, N.R. Tao, K. Lu,  Effect of stacking-fault energy on deformation twin thickness in Cu–Al alloys, Scripta Materialia, 2009, Vol. 60, 211-213.

17.  G.H. Xiao, N.R. Tao, K. Lu,  Microstructures and mechanical properties of a Cu-Zn alloy subjected to cryogenic dynamic plastic deformation,  Materials Science and Engineering A, 2009, Vol. 513-514, 13-21.

18.  C.S. Hong, N.R. Tao, K. Lu, X. Huang,  Grain orientation dependence of deformation twinning in pure Cu subjected to dynamic plastic deformation Scripta Materialia, 2009, Vol. 61, 289-292.

19.  N.R. Tao, K. Lu,  Nano-scale structural refinement via deformation twinning in fcc metals,  Scripta Materialia, 2009, Vol. 60, 1039-1043.

20.  Y.S. Li, Y. Zhang, N.R. Tao, K. Lu  Effect of Zener-Hollomon parameter on microstructures and mechanical properties of Cu subjected to plastic deformation, Acta Materialia, 2009, Vol. 57, 761-772.

21.  E. Qin, L. Lu, N.R. Tao, K. Lu,  Enhanced fracture toughness of bulk nanocrystalline Cu with embedded nanoscale twins, Scripta Materialia, 2009, Vol. 60, 539-542.

22.  Y. Zhang, N.R. Tao, K. Lu,  Mechanical properties and rolling behaviors of nano-grained copper with embedded nano-twin bundles, Acta Materialia, 2008, Vol. 56, 2429-2440.

23.  G.H. Xiao, N.R. Tao, K. Lu Effects of strain, strain rate and temperature on deformation twinning in a Cu-Zn alloy, Scripta Materialia, 2008, Vol. 59, 975-978.

24.  W.L. Li, N.R. Tao, K. Lu  Fabrication of a gradient nano-micro-structured surface layer on bulk copper by means of surface mechanical grinding treatment (SMGT), Scripta Materialia, 2008, Vol. 59, 546-549.

25.  Y.S. Li, Y Zhang, N.R. Tao, K. Lu Effect of thermal annealing on mechanical properties of a nanostructured copper prepared by means of dynamic plastic deformation, Scripta Materialia, 2008, Vol. 59, 475-478.

26.  N.R. Tao, J. Lu, K. Lu,  Surface nanocrystallization by surface mechanical attrition treatment,  Materials Science Forum, 2008, Vol. 579, 91-108.

27.  Y.S. Li, N.R. Tao, K. Lu,  Microstructural evolution and nanostructure formation in copper during dynamic plastic deformation at cryogenic temperatures,  Acta Materialia, 2008, Vol. 56, 230-241.